

Highlights:

- Anomalously high lithium & LCT pathfinder results returned from pegmatite rock chips at Breakaway Dam (E29/1037).
- Multiple elevated lithium values, alongside Mg/Li ratios <30 and Nb/Ta ratios <8, suggest potential for highly fractionated/fertile pegmatites.
- Potentially large scale, LCT pegmatite province approximately 22km of previously untested granite/greenstone.
- Excellent geochemical results for Li from pegmatite rock chips, including:
 - o FR000832 1,695ppm Li (3,649ppm Li₂O or 0.4% Li₂O)
 - o FR000853 1,345ppm Li (2,896ppm Li₂O or 0.3% Li₂O)
 - FR000805 483ppm Li (1,040ppm Li₂O or 0.1% Li₂O)
- Strong LCT pathfinder results, within Li-enriched pegmatite rock chips, including:
 - \circ FR000811 183ppm Nb (and 878pp Li₂O)
 - o FR000808 162ppm Cs (and 704ppm Li₂O)
 - o FR000774 2,100ppm Rb (and 523ppm Li₂O)
 - FR000895 128ppm Ta (and 172ppm Li₂O)
 - o FR000877 96ppm Be (and 65ppm Li₂O)

Forrestania Resources (**ASX:FRS**, Forrestania or the Company), is pleased to provide an update on activities at its Eastern Goldfields project area. The Eastern Goldfields project area is located north of Coolgardie and north of Kalgoorlie, around the gold mining districts of Leonora, Coolgardie and Menzies (see figure 1). The Eastern Goldfields project area comprises eighteen tenements (ten ELs and eight EL applications) that are strategically located over areas that the Company believes are highly prospective for multi-commodities, particularly lithium, copper, gold and REEs.

Forrestania Resources' Managing Director Michael Anderson commented:

"Our maiden work programmes in the Eastern Goldfields have proven very encouraging. The initial identification of multiple outcropping pegmatites has now been followed by these highly anomalous results, which demonstrate the obvious prospectivity of the tenements. We will continue our systematic mapping and sampling to identify priority targets, to be drilled as soon as possible."

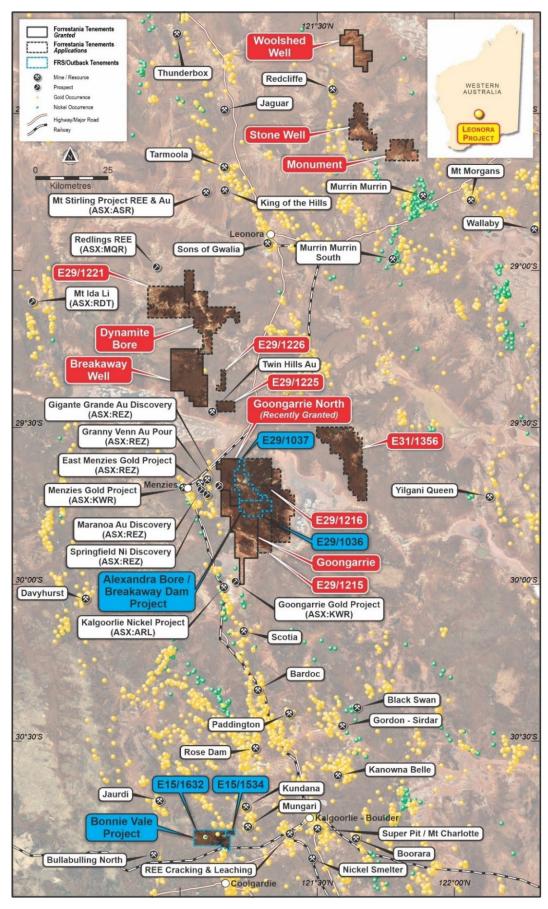


Figure 1: The Eastern Goldfields project area (recent acquisitions highlighted in blue)

Discussion:

The Company has recently completed mapping and reconnaissance field trips to the newly acquired Eastern Goldfields tenements. The focus of these field trips was to further enhance the Company's geological understanding of the project areas, and to further assess the potential for lithium mineralisation.

The newly acquired tenements (Breakaway Dam - E29/1037 and Alexandra Bore - E29/1036) have never previously been explored for their lithium potential; with previous, historic exploration instead focussed on copper, gold and nickel¹.

Significantly, as a result of the Company's recent field work², multiple pegmatites have been confirmed and mapped across Breakaway Dam, with several highly anomalous lithium and LCT pathfinder results returned from sampled rock chips (figure 2).

Of the pegmatite/granite samples referred to in this announcement:

- 45% of samples returned Li₂O values >100ppm
- 13% of samples returned Li₂O values >300ppm

Rock chips with Li₂O values > 500ppm include:

- FR000832 3649ppm Li₂O (includes 309ppm Cs)
- FR000853 2896ppm Li₂O (includes 64.7ppm Ta)
- FR000805 1040ppm Li₂O (includes 66.8ppm Cs)
- FR000811 878ppm Li₂O (includes 129ppm Ta)
- FR000808 704ppm Li₂O (includes 161.5ppm Cs)
- FR000807 549ppm Li₂O (includes 45.2ppm Cs)
- FR000774 525ppm Li₂O (includes 49ppm Ta)
- FR000781 502ppm Li₂O (includes 38.8ppm Ta)

Pegmatites at the Breakaway Dam project (E29/1037)

At the Breakaway Dam project area, multiple pegmatite outcrops have been mapped at surface. In simple terms, a pegmatite can be seen as the "offspring" of a parental, granitic rock and in terms of Li (and other) mineralisation, the granite and/or pegmatite can be either "barren" (not enriched) or "fertile" (enriched).

In order to determine the regional scale potential for LCT (lithium caesium tantalum) pegmatites at the Breakaway Dam project area, geochemistry has been used to analyse their potential "fertility" and whether they have the chemical composition that makes the area prospective for LCT mineralisation.

Fertile LCT pegmatites will have elevated Li, Cs and Ta values (as well as other pathfinder elements, including Be, Nb, Rb and Sn), as well as atypical elemental ratios, in particular for Mg/Li and Nb/Ta.

An elemental ratio is achieved by dividing one element by the other. In LCT exploration, Cerny, 1989 and Breaks et al, 2005 have suggested that the ratios (listed in table 1) for Mg/Li (magnesium/lithium) and Nb/Ta (niobium/tantalum), along with elevated lithium values are the most important indicators for pegmatite/granite fertility/fractionation; Cerny, 1989 and Breaks

¹ ASX:FRS, Option to acquire strategic, highly prospective Eastern Goldfields tenements, 19th May 2023

² ASX:FRS, New pegmatites identified at Eastern Goldfields, 9th June 2023

et al, 2005 have indicated the desired and prospective Mg/Li and Nb/Ta ratio ranges as seen in Table 1:

Geochemical ratio	Required range for fertility/fractionation
Mg/Li (magnesium: lithium)	<30 = highly fertile, <50 = fertile, >50 = barren
Nb/Ta (niobium: tantalum)	≤8 indicates high fractionation

Table 1: Geochemical fertility ratios within fertile granites/pegmatites – required ranges. Reference: Cerny (1989, p. 283), Breaks et al (2005, p.9)

In terms of fertility and fractionation, when lithium values are elevated, Cerny and Breaks et al suggest the lower the **Mg/Li ratio**, the better (**figures 3 and 4**). Significantly, of the 99 rock chips that were lithologically logged as pegmatites (and with a value of >45ppm Li₂O):

- 87% returned Mg/Li ratios <30
- 79% returned Mg/Li ratios <10

For the **Nb/Ta ratio** (figures 5 and 6), of the 99 rock chips that were lithologically logged as pegmatites (and with a value of >45ppm Li₂O):

90% returned Nb/Ta ratios <8

These results suggest the strong potential for a highly fertile pegmatite system in the Company's Eastern Goldfields tenements with zones of Li mineralisation (combined with strong indicator Mg/Li and Nb/Ta ratios) up to 1200m in strike length.

The rock chip samples referenced in this announcement presented in a highly weathered state and further analyses are required to fully characterise the lithium mineralisation, in order to understand the lithium's host mineral/s. No visual estimates of lithium bearing minerals are provided in this announcement, as no lithium bearing minerals were observed, due to the nature of the highly weathered samples.

Next Steps:

The Company intends to focus its exploration on the significant lithium, copper and gold potential of the Breakaway Dam/Alexandra Bore project area (E29/1037 and E29/1036) in the coming months.

The rock chip samples referenced in this announcement presented in a highly weathered state and further analyses are required to fully characterise the lithium mineralisation, in order to understand the lithium's host mineral/s.

Further mapping trips and geochemical sampling will be undertaken in the short term, with a view to defining targets for a maiden drilling programme.

Mapping and sampling programmes are currently on-going at the Breakaway Dam/Alexandra Bore project area (E29/1037 and E29/1036) with assays pending for a number of other samples collected (in recent weeks) from the Alexandra Bore project area (E29/1036). None of those samples (from E29/1036) are being reported here, but those results are expected in approximately 6-8 weeks. Upon receipt of the assays and after geological analysis, additional mapping and geochemical programmes will be planned.

References:

Cerny, P. 1989 'Exploration strategy and methods for pegmatite deposits of tantalum', in Lathanides, Tantalum and Niobium, Sprinder-Verlag, New York, pp. 247-302

Breaks, F, Selway, J & Tindle, A 2005, 'A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada and Large Worldwide Tantalum Deposits', Canadian Institute of Mining, Metallurgy and Petroleum, vol.14, no.1-4, pp.1-30.

Yang et al, 3 August 2018, S-type granites in the western Superior Province: a marker of Archean collision zones, Canadian Journal of Earth Sciences

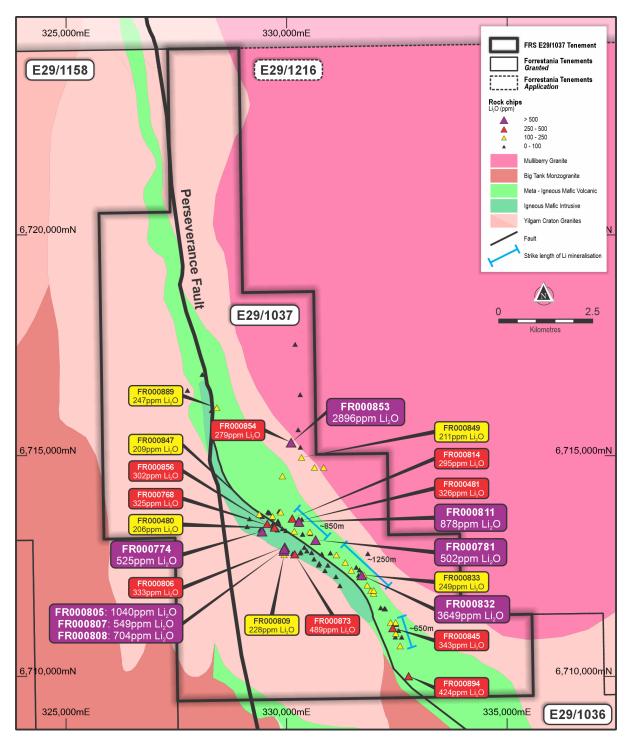


Figure 2: The Breakaway Dam project area (E29/1037) including all mapped pegmatite, granite and quartz vein locations from recent field trips. All samples >200ppm Li₂O are highlighted. The geological base map is courtesy of GSWA, the legend includes all geological units within the project area.

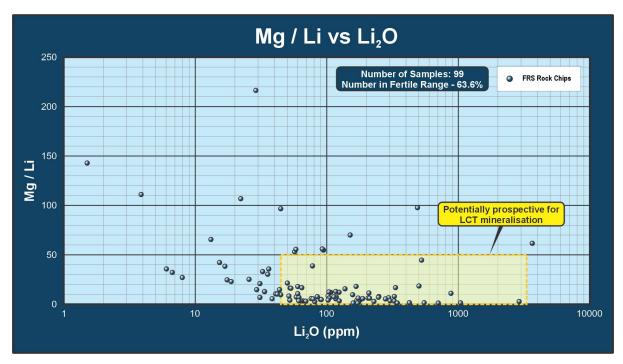


Figure 3: Scatter plot showing fertility ratio of Mg/Li vs Li_2O for pegmatitic and granitic rock chips (negative values not included). Yellow shaded shows the number of rock chips with a high exploration potential for LCT mineralisation; this is based on those samples with anomalous Li_2O values (>45ppm Li_2O) AND an Mg/Li ratio \leq 50. Logarithmic scale used for x axis.

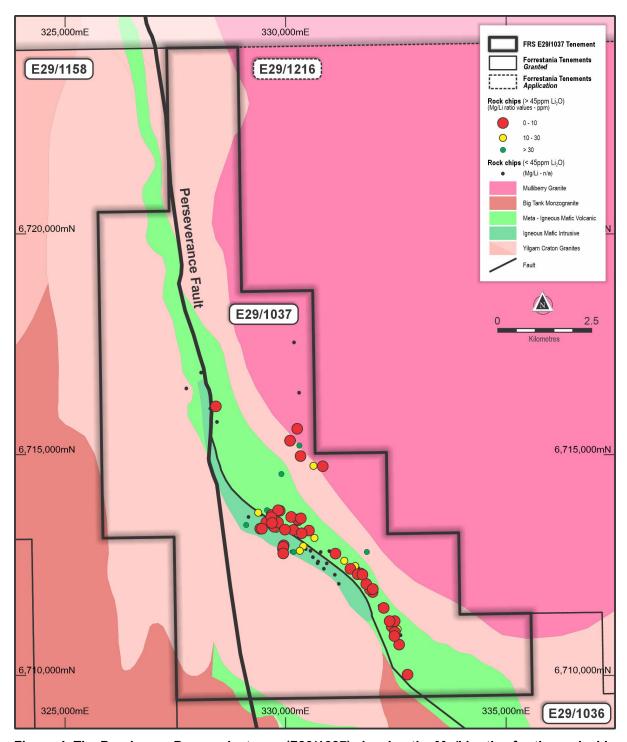


Figure 4: The Breakaway Dam project area (E29/1037) showing the Mg/Li ratios for the rock chip samples. Note that the lower the Mg/Li ratio, the better, in terms of fertility and fractionation – indicating strong exploration potential.

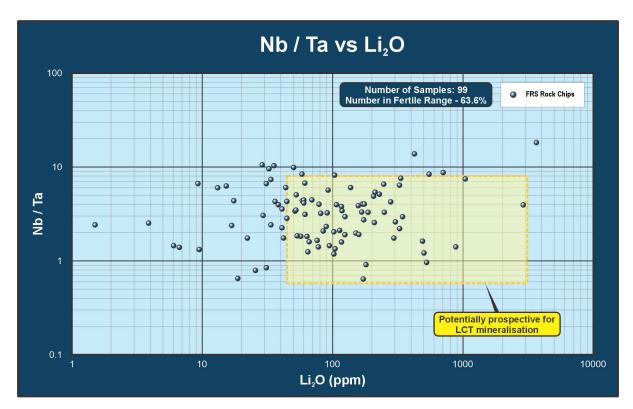


Figure 5: Scatter plot showing fertility ratio of Nb/Ta vs Li_2O for pegmatitic and granitic rock chips. Yellow shaded shows the number of rock chips with a high exploration potential for LCT mineralisation; this is based on those samples with anomalous Li_2O values (>45ppm Li_2O) AND an Nb/Ta ratio \leq 8. Logarithmic scale used for x and y axis.

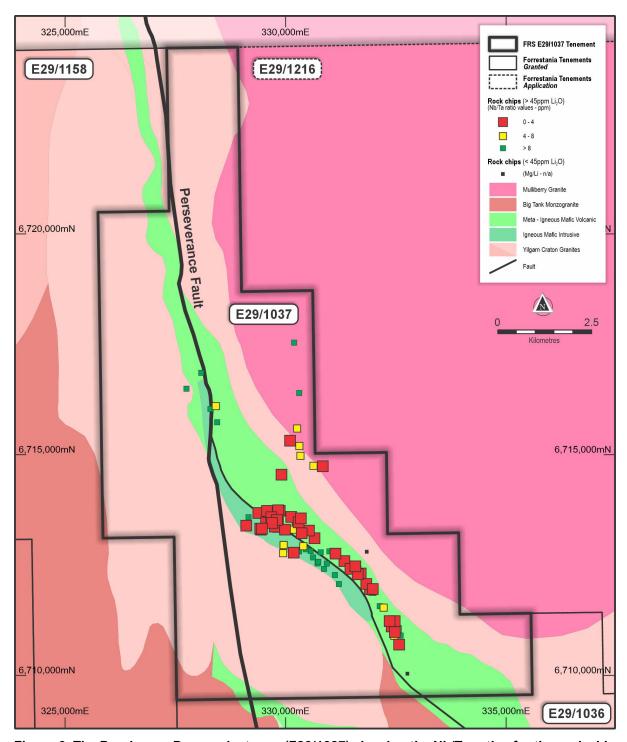


Figure 6: The Breakaway Dam project area (E29/1037) showing the Nb/Ta ratios for the rock chip samples. Note that an Nb/Ta ratio <8 indicates high fractionation and favourable exploration potential.

This announcement is authorised for release by the Board.

For further information, please contact:

Michael Anderson Cecilia Tyndall
MD & CEO Company Secretary
To 104 (0) 440 400 707

T: +61 (0) 412 496 797 T: +61 (0) 400 596 734

E: <u>michael@forrestaniaresources.com.au</u> E: <u>Cecilia@forrestaniaresources.com.au</u>

About Forrestania Resources Limited

Forrestania Resources Limited is an exploration Company searching for lithium, gold, and nickel in the Forrestania, Southern Cross and Eastern Goldfields regions of Western Australia. The company is also exploring for lithium in the James Bay region of Quebec, Canada.

The Forrestania Project is prospective for lithium, gold and nickel. The Southern Cross Project is prospective for gold and lithium and the Eastern Goldfields project is prospective for gold, lithium, rare earth elements and copper.

The flagship Forrestania Project is situated in the well-endowed southern Forrestania Greenstone Belt, with a tenement footprint spanning approximately 100km, north to south of variously metamorphosed mafic, ultramafic / volcano-sedimentary rocks, host to the Mt Holland lithium mine (189mT @ 1.5% Li₂O), the historic 1Moz Bounty gold deposit and the operating Flying Fox, and Spotted Quoll nickel mines.

The Southern Cross Project tenements are scattered, within proximity to the town of Southern Cross and located in and around the Southern Cross Greenstone Belt. It is the Company's opinion that the potential for economic gold mineralisation at the Southern Cross Project has not been fully evaluated. In addition to greenstone shear-hosted gold deposits and lithium bearing pegmatites, Forrestania is targeting granite-hosted gold deposits. New geological models for late Archean granite-controlled shear zone/fault hosted mineralisation theorise that gold forming fluids, formed at deep crustal levels do not discriminate between lithologies when emplaced in the upper crust. Applying this theory, Forrestania has defined multiple new targets.

The Eastern Goldfields tenements are located within the Norseman-Wiluna Greenstone Belt of the Yilgarn Craton. The Project includes ten Exploration Licences and eight Exploration Licence Applications, covering a total of ~1300km². The tenements are predominately non-contiguous and scattered over 300km length, overlying or on the margins of greenstone belts. The southernmost tenement is located approximately 15km north of Coolgardie, and the northernmost tenement is located approximately 70km northeast of Leonora. Prior exploration over the project area has focused on gold, copper, diamonds, and uranium. Tenements in the Project area have been variably subjected to soil sampling, stream sampling, drilling, mapping, rock chip sampling and geophysical surveys.

Forrestania Resources has earned a 50% interest in the Hydra Lithium Project (HLP) located in northern Quebec, Canada and will form a Joint Venture with ALX Resources (TSXV: AL; FSE: 6LLN; OTC: ALXEF). The HLP comprises eight sub-projects totalling ~293km² within the world-class lithium exploration district of James Bay. These sub-projects strategically overlie or are positioned on the margins of highly prospective greenstone belts and are proximal to existing, significant lithium projects and deposits.

The Company has an experienced Board and management team which is focused on exploring, collaborating, and acquiring to increase value for Shareholders.

Competent Person's Statement

The information in this report that relates to exploration results is based on and fairly represents information compiled by Mr Ashley Bennett. Mr Bennett is the Exploration Manager of Forrestania Resources Limited and is a member of the Australian Institute of Geoscientists. Mr Bennett has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Bennett consents to the inclusion in this report of the matters based on information in the form and context in which they appear.

Disclosure

The information in this announcement is based on the following publicly available ASX announcements and Forrestania Resources IPO, which is available from https://www2.asx.com.au/

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original ASX announcements and that all material assumptions and technical parameters underpinning the relevant ASX announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are represented have not been materially modified from the original ASX announcements.

Cautionary statement regarding values & forward looking information

The figures, valuations, forecasts, estimates, opinions and projections contained herein involve elements of subjective judgment and analysis and assumption. Forrestania Resources does not accept any liability in relation to any such matters, or to inform the Recipient of any matter arising or coming to the company's notice after the date of this document which may affect any matter referred to herein. Any opinions expressed in this material are subject to change without notice, including as a result of using different assumptions and criteria. This document may contain forward-looking statements. Forward-looking statements are often, but not always, identified by the use of words such as "seek", "anticipate", "believe", "plan", "expect", and "intend" and statements than an event or result "may", "will", "should", "could", or "might" occur or be achieved and other similar expressions. Forwardlooking information is subject to business, legal and economic risks and uncertainties and other factors that could cause actual results to differ materially from those contained in forward-looking statements. Such factors include, among other things, risks relating to property interests, the global economic climate, commodity prices, sovereign and legal risks, and environmental risks. Forward-looking statements are based upon estimates and opinions at the date the statements are made. Forrestania Resources undertakes no obligation to update these forward-looking statements for events or circumstances that occur subsequent to such dates or to update or keep current any of the information contained herein. The Recipient should not place undue reliance upon forward-looking statements. Any estimates or projections as to events that may occur in the future (including projections of revenue, expense, net income and performance) are based upon the best judgment of Forrestania Resources from information available as of the date of this document. There is no guarantee that any of these estimates or projections will be achieved. Actual results will vary from the projections and such variations may be material. Nothing contained herein is, or shall be relied upon as, a promise or representation as to the past or future. Forrestania Resources, its affiliates, directors, employees and/or agents expressly disclaim any and all liability relating or resulting from the use of all or any part of this document or any of the information contained herein. Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. The sample data reported in this announcement is not intended to support a mineral resources estimation. No visual estimates of lithium bearing minerals are provided, as no lithium bearing minerals were observed.

Table 2: Showing the Li, Li₂O, Mg, Nb and Ta assay results from pegmatite and or granite samples; only samples with Li₂O \geq 45ppm are displayed. This table also shows the Mg/Li and Nb/Ta ratios. All coordinates are MGA94_51. No visual estimates of lithium bearing minerals are provided in this announcement, as no lithium bearing minerals were observed, due to the nature of the highly weathered samples. Mg/Li cells highlighted with values <10 (note that <30 is considered highly fertile) and Nb/Ta ratios highlighted <8. n/a indicates an Mg assay returned with a value of -0.01. A reminder of the required ranges for fertility/fractionation precedes the table (Reference: Cerny (1989, p. 283), Breaks et al (2005, p. 9):

Geochemical ratio	Required range for fertility/fractionation
Mg/Li (magnesium: lithium)	<30 = highly fertile, <50 = fertile, >50 = barren
Nb/Ta (niobium: tantalum)	≤8 indicates high fractionation

SampleID	North	East	Lease_ID	Sample_Description	Li_ppm	Li ₂ O ppm	Mg_pct	Nb_ppm	Ta_ppm	Mg/Li	Nb/Ta
FR000832	6712329	331704	E29/1037	Biotite & mica rich pegmatite	1695	3649	10.45	2.73	0.15	61.7	18.2
FR000853	6715338	330101	E29/1037	Mica rich sample from pegmatite outcrop	1345	2895	0.37	256.00	64.70	2.8	4.0
FR000805	6712966	329957	E29/1037	Mica bearing pegmatite outcrop	483	1040	0.07	84.40	11.30	1.4	7.5
FR000811	6713541	330281	E29/1037	Mica bearing pegmatite outcrop	408	878	0.45	182.50	129.00	11.0	1.4
FR000808	6712884	329941	E29/1037	Pegmatite outcrop	327	704	0.04	39.10	4.48	1.2	8.7
FR000807	6712929	329947	E29/1037	Pegmatite outcrop	255	549	0.04	37.50	4.48	1.6	8.4
				50m mica bearing pegmatite with granite & biotite							
FR000774	6713323	329443	E29/1037	inclusions	244	525	1.09	47.20	49.00	44.7	1.0
FR000781	6713128	330657	E29/1037	Mica bearing pegmatite outcrop	233	502	0.43	47.10	38.80	18.5	1.2
FR000873	6712802	330184	E29/1037	Biotite rich pegmatite	227	489	2.22	14.05	8.68	97.8	1.6
FR000894	6710036	332764	E29/1037	Pegmatite outcrop	197	424	0.03	34.90	2.53	1.5	13.8
FR000845	6711126	332405	E29/1037	Pegmatite outcrop	160	343	0.02	76.80	26.00	1.3	3.0
FR000806	6712965	329959	E29/1037	Biotite rich pegmatite	155	333	0.26	20.80	2.74	16.8	7.6
FR000481	6713551	330271	E29/1037	50m pegmatite on ridge	152	326	0.12	77.00	34.90	7.9	2.2
FR000768	6713406	329725	E29/1037	100m Mica bearing pegmatite on granite contact	151	325	0.05	45.60	7.13	3.3	6.4
FR000856	6713488	329561	E29/1037	Drill spoil 5-7m weathered peg	141	302	0.05	71.10	27.30	3.6	2.6
FR000814	6713610	330126	E29/1037	Pegmatite outcrop	137	295	0.09	39.30	22.50	6.6	1.7
FR000854	6715336	330102	E29/1037	Mica bearing pegmatite outcrop	130	279	0.07	22.20	5.23	5.4	4.2
FR000833	6712329	331704	E29/1037	Mica bearing pegmatite outcrop	116	249	0.09	48.70	14.80	7.8	3.3

SampleID	North	East	Lease_ID	Sample_Description	Li_ppm	Li ₂ O ppm	Mg_pct	Nb_ppm	Ta_ppm	Mg/Li	Nb/Ta
FR000889	6716115	328420	E29/1037	Pegmatite outcrop	115	246	0.08	49.30	7.52	7.0	6.6
FR000809	6712783	329949	E29/1037	Pegmatite outcrop	106	228	0.03	31.90	6.22	2.8	5.1
FR000849	6714989	330340	E29/1037	Mica bearing pegmatite outcrop	98	211	0.06	62.30	11.55	6.1	5.4
FR000847	6713701	329384	E29/1037	Mica bearing granite outcrop	97	209	0.11	41.70	16.30	11.3	2.6
FR000480	6713388	329741	E29/1037	20m pegmatite outcrop	96	206	0.06	66.00	13.50	6.3	4.9
FR000815	6713751	329869	E29/1037	Pegmatite outcrop	87	187	0.05	44.60	13.55	5.8	3.3
FR000782	6713302	330530	E29/1037	Mica bearing pegmatite outcrop	84	180	0.04	39.00	42.70	4.8	0.9
FR000879	6713314	330177	E29/1037	Pegmatite outcrop	81	175	0.02	55.60	13.80	2.5	4.0
FR000898	6711250	332474	E29/1037	Pegmatite outcrop	80	173	0.05	44.80	16.35	6.2	2.7
FR000895	6710716	332574	E29/1037	Pegmatite outcrop	80	172	0.01	82.00	128.00	1.3	0.6
FR000827	6711908	331972	E29/1037	15m pegmatite outcrop	79	169	0.03	45.90	11.40	3.8	4.0
FR000479	6713485	329560	E29/1037	Pegmatite outcrop	78	167	0.14	50.50	15.25	18.1	3.3
FR000876	6713652	329685	E29/1037	Pegmatite outcrop	74	159	0.01	62.90	32.90	1.4	1.9
FR000828	6711970	331911	E29/1037	7m wide pegmatite outcrop	73	157	0.07	34.70	8.95	9.6	3.9
FR000848	6714568	329909	E29/1037	Pegmatite outcrop	70	150	0.49	19.70	9.96	70.1	2.0
FR000850	6714762	330634	E29/1037	Pegmatite outcrop	64	137	0.10	49.70	8.24	15.7	6.0
FR000851	6714758	330844	E29/1037	Mica bearing granite outcrop	58	124	0.02	31.80	10.75	3.5	3.0
FR000812	6713488	330295	E29/1037	Pegmatite outcrop	58	124	0.07	32.90	17.30	12.2	1.9
FR000829	6712092	331829	E29/1037	Pegmatite outcrop	55	118	0.04	20.30	5.92	7.3	3.4
FR000842	6711002	332477	E29/1037	Pegmatite outcrop	54	117	0.03	58.60	15.45	5.5	3.8
FR000837	6712610	331331	E29/1037	Mica bearing pegmatite outcrop	54	117	0.07	68.40	43.00	12.9	1.6
FR000846	6711251	332359	E29/1037	Pegmatite outcrop	53	113	0.04	40.30	19.10	7.6	2.1
FR000769	6713391	329755	E29/1037	Mid-point 100m mica bearing pegmatite outcrop	50	107	0.06	75.20	18.90	12.1	4.0
FR000838	6712777	331132	E29/1037	Pegmatite outcrop	49	104	0.03	89.20	66.20	6.2	1.3
FR000831	6712322	331760	E29/1037	Mica bearing granite outcrop	48	104	0.06	20.20	2.47	12.5	8.2
FR000840	6711977	331975	E29/1037	Pegmatite outcrop	48	102	0.02	21.20	10.40	4.2	2.0
FR000836	6712433	331469	E29/1037	Pegmatite outcrop	48	102	0.04	53.60	45.20	8.4	1.2
FR000817	6713722	329615	E29/1037	Mica bearing pegmatite outcrop	44	94	0.24	33.10	22.80	54.8	1.5
FR000852	6715212	330313	E29/1037	Mica bearing granite outcrop	43	92	0.24	41.30	7.29	55.9	5.7
FR000813	6713577	330347	E29/1037	Pegmatite outcrop	42	91	0.02	16.70	5.14	4.7	3.2
FR000810	6713485	329829	E29/1037	Pegmatite outcrop	42	89	0.02	56.10	24.10	4.8	2.3

SampleID	North	East	Lease_ID	Sample_Description	Li_ppm	Li₂O ppm	Mg_pct	Nb_ppm	Ta_ppm	Mg/Li	Nb/Ta
FR000822	6712313	331634	E29/1037	Pegmatite outcrop	39	85	0.03	53.30	25.60	7.6	2.1
FR000816	6713761	329833	E29/1037	Coarse blocky feldspar from pegmatite	38	81	0.01	17.45	5.43	2.7	3.2
FR000823	6712305	331742	E29/1037	Pegmatite outcrop	37	79	0.02	76.00	18.95	5.5	4.0
FR000860	6713746	329580	E29/1037	Pegmatite outcrop	36	78	0.14	53.60	38.00	38.8	1.4
FR000780	6713321	329986	E29/1037	Mica bearing pegmatite outcrop	35	76	0.02	78.20	47.30	5.7	1.7
FR000896	6710913	332466	E29/1037	Pegmatite outcrop	32	69	0.01	12.40	2.78	3.1	4.5
FR000818	6713604	329679	E29/1037	Pegmatite outcrop	31	66	0.01	47.10	29.50	3.3	1.6
FR000877	6713542	329806	E29/1037	Pegmatite outcrop	30	65	0.05	91.30	73.00	16.7	1.3
FR000819	6713473	329692	E29/1037	Pegmatite outcrop	30	64	0.01	78.30	43.00	3.4	1.8
FR000821	6713239	330366	E29/1037	Pegmatite outcrop	29	61	0.02	34.40	11.00	7.0	3.1
FR000855	6715606	330264	E29/1037	Pegmatite outcrop	28	61	0.01	31.20	4.63	3.5	6.7
FR000897	6711060	332542	E29/1037	Mica bearing granite outcrop	28	60	0.03	30.50	7.37	10.8	4.1
FR000770	6713337	329795	E29/1037	End of 100m mica bearing pegmatite outcrop	28	60	0.05	39.20	8.82	17.9	4.4
FR000565	6711548	332224	E29/1037	Pegmatite outcrop	27	59	0.02	200.00	45.80	7.4	4.4
FR000839	6712799	331844	E29/1037	Granite outcrop	27	58	0.15	16.65	1.98	55.6	8.4
FR000778	6713413	329109	E29/1037	Mica bearing pegmatite small dyke	26	57	0.14	71.30	39.00	53.0	1.8
FR000835	6712491	331582	E29/1037	Pegmatite outcrop	25	53	0.04	34.70	18.75	16.1	1.9
FR000820	6712941	330403	E29/1037	Pegmatite outcrop	24	53	0.04	57.20	11.30	16.4	5.1
FR000773	6713345	329424	E29/1037	End of 50m, 5m wide mica bearing pegmatite outcrop	24	52	0.01	62.70	18.05	4.1	3.5
FR000772	6713342	329465	E29/1037	5m wide 50m long mica bearing pegmatite outcrop	24	51	0.02	71.40	21.10	8.4	3.4
FR000870	6712837	330324	E29/1037	Pegmatite outcrop	23	50	0.05	47.40	4.80	21.5	9.9
FR000826	6711549	332229	E29/1037	Pegmatite outcrop	21	45	0.02	117.00	27.20	9.7	4.3
FR000483	6712821	330568	E29/1037	Pegmatite from drill spoil 10 To 13m	21	45	0.20	52.20	18.40	96.6	2.8
FR000864	6712415	330871	E29/1037	Pegmatite outcrop	20	44	0.03	33.80	5.60	14.8	6.0
FR000878	6713365	329907	E29/1037	5m pegmatite outcrop	20	42	0.02	207.00	118.00	10.3	1.8
FR000568	6711547	332240	E29/1037	Pegmatite outcrop	19	41	0.02	55.10	24.50	10.5	2.2
FR000567	6711548	332220	E29/1037	Pegmatite outcrop	19	41	0.02	6.29	1.76	10.5	3.6
FR000482	6713238	330365	E29/1037	50m pegmatite on ridge	18	38	0.01	21.80	5.50	5.6	4.0
FR000890	6716858	328089	E29/1037	Pegmatite outcrop	17	36	0.06	27.90	6.49	35.7	4.3
FR000777	6713246	329402	E29/1037	Mica bearing Granite outcrop	17	36	0.05	22.10	2.14	30.3	10.3
FR000834	6712430	331653	E29/1037	Pegmatite outcrop	16	34	0.02	58.00	24.00	12.8	2.4

SampleID	North	East	Lease_ID	Sample_Description	Li_ppm	Li ₂ O ppm	Mg_pct	Nb_ppm	Ta_ppm	Mg/Li	Nb/Ta
FR000868	6712678	330623	E29/1037	Pegmatite outcrop	16	34	0.02	33.30	4.52	12.8	7.4
FR000862	6713642	329452	E29/1037	Granite outcrop	15	33	0.05	2.68	0.28	33.1	9.6
FR000800	6712816	330996	E29/1037	Pegmatite outcrop	14	31	0.01	56.80	67.10	6.9	0.8
FR000844	6711196	332490	E29/1037	Pegmatite outcrop	14	31	0.03	23.40	3.52	20.8	6.6
FR000875	6712799	330146	E29/1037	Pegmatite outcrop	14	29	0.02	41.70	13.65	14.7	3.1
FR000869	6712278	331121	E29/1037	Granite outcrop	13	29	0.29	2.74	0.26	216.4	10.5
				End of 50m mica bearing pegmatite adjacent to granite							
FR000775	6713345	329403	E29/1037	outcrop	12	26	0.03	76.00	96.20	25.2	0.8
FR000801	6712793	330801	E29/1037	Pegmatite outcrop	10	22	0.11	41.90	24.00	106.8	1.7
FR000872	6712805	330185	E29/1037	Pegmatite outcrop	9	19	0.02	46.30	71.20	23.0	0.7
FR000799	6712539	330937	E29/1037	Pegmatite outcrop	8	17	0.02	21.70	4.97	24.7	4.4
FR000803	6712862	330460	E29/1037	Pegmatite outcrop	8	17	0.03	34.50	14.45	38.5	2.4
FR000843	6710909	332609	E29/1037	Pegmatite outcrop	7	15	0.03	31.60	5.03	42.3	6.3
FR000865	6712542	330726	E29/1037	Pegmatite outcrop	6	13	0.04	55.00	9.14	65.6	6.0
FR000858	6713651	329687	E29/1037	Coarse blocky feldspar from pegmatite	4	9	n/a	4.34	3.29	n/a	1.3
FR000880	6717544	330197	E29/1037	Coarse blocky feldspar from pegmatite	4	9	n/a	12.05	1.81	n/a	6.7
FR000841	6711572	332134	E29/1037	Pegmatite outcrop	3	7	0.01	94.00	67.50	32.3	1.4
FR000874	6712803	330147	E29/1037	Coarse blocky feldspar from pegmatite	3	6	0.01	30.20	20.80	35.7	1.5
FR000866	6712576	330741	E29/1037	Pegmatite outcrop	2	4	0.02	85.10	33.70	111.1	2.5
FR000867	6712575	330741	E29/1037	Coarse blocky feldspar from pegmatite	1	2	0.01	4.82	1.99	142.9	2.4

Table 3: Supplementary rock chip data showing all rock chip assay results for Be, Cs, K, Li, Mg. Nb, Rb, Sn and Ta. All coordinates are MGA94_51. No visual estimates of lithium bearing minerals are provided in this announcement, as no lithium bearing minerals were observed, due to the highly weathered nature of the samples. n/a indicates an Mg or K assay that returned a value of -0.01.

SampleID	North	East	Lease_ID	Sample_Description	Li_ppm	Be_ppm	Cs_ppm	K_pct	Mg_pct	Nb_ppm	Rb_ppm	Sn_ppm	Ta_ppm
FR000832	6712329	331704	E29/1037	Biotite & mica rich pegmatite	1695	4.14	309.0	6.63	10.45	2.73	2470	10.65	0.15
FR000853	6715338	330101	E29/1037	Mica rich sample from pegmatite outcrop	1345	12.15	88.7	5.87	0.37	256.00	2140	131.00	64.70
FR000805	6712966	329957	E29/1037	Mica bearing pegmatite outcrop	483	5.90	66.8	4.83	0.07	84.40	1190	18.10	11.30
FR000811	6713541	330281	E29/1037	Mica bearing pegmatite outcrop	408	6.80	30.6	3.86	0.45	182.50	1180	93.00	129.00
FR000808	6712884	329941	E29/1037	Pegmatite outcrop	327	3.83	161.5	6.34	0.04	39.10	1290	6.82	4.48
FR000807	6712929	329947	E29/1037	Pegmatite outcrop	255	3.61	45.2	6.19	0.04	37.50	1140	6.40	4.48
FR000774	6713323	329443	E29/1037	50m mica bearing pegmatite with granite & biotite inclusions	244	5.72	87.2	2.84	1.09	47.20	2100	33.20	49.00
FR000781	6713128	330657	E29/1037	Mica bearing pegmatite outcrop	233	6.41	28.2	1.26	0.43	47.10	533	30.30	38.80
FR000873	6712802	330184	E29/1037	Biotite rich pegmatite	227	9.71	107.5	2.35	2.22	14.05	286	7.23	8.68
FR000894	6710036	332764	E29/1037	Pegmatite outcrop	197	3.08	6.0	2.92	0.03	34.90	722	14.50	2.53
FR000845	6711126	332405	E29/1037	Pegmatite outcrop	160	4.30	32.8	4.64	0.02	76.80	1045	18.60	26.00
FR000806	6712965	329959	E29/1037	Biotite rich pegmatite	155	3.57	9.3	2.28	0.26	20.80	281	3.44	2.74
FR000481	6713551	330271	E29/1037	50m pegmatite on ridge	152	5.44	9.9	1.81	0.12	77.00	386	21.10	34.90
FR000768	6713406	329725	E29/1037	100m mica bearing pegmatite on granite contact	151	5.24	68.2	3.67	0.05	45.60	819	6.48	7.13
FR000856	6713488	329561	E29/1037	Drill spoil 5-7m weathered peg	141	4.58	25.9	0.87	0.05	71.10	315	8.08	27.30
FR000814	6713610	330126	E29/1037	Pegmatite outcrop	137	4.89	7.3	1.21	0.09	39.30	353	18.70	22.50
FR000854	6715336	330102	E29/1037	Mica bearing pegmatite outcrop	130	1.46	7.2	0.63	0.07	22.20	206	13.15	5.23
FR000833	6712329	331704	E29/1037	Mica bearing pegmatite outcrop	116	5.91	6.2	1.21	0.09	48.70	344	19.05	14.80
FR000889	6716115	328420	E29/1037	Pegmatite outcrop	115	5.25	9.7	3.07	0.08	49.30	450	28.70	7.52
FR000809	6712783	329949	E29/1037	Pegmatite outcrop	106	4.12	34.6	4.27	0.03	31.90	767	6.64	6.22
FR000849	6714989	330340	E29/1037	Mica bearing pegmatite outcrop	98	1.70	4.9	1.11	0.06	62.30	306	42.30	11.55
FR000847	6713701	329384	E29/1037	Mica bearing granite outcrop	97	3.57	12.1	1.00	0.11	41.70	419	15.55	16.30
FR000480	6713388	329741	E29/1037	20m pegmatite outcrop	96	3.80	7.7	1.88	0.06	66.00	460	5.91	13.50
FR000815	6713751	329869	E29/1037	Pegmatite outcrop	87	4.28	9.8	3.12	0.05	44.60	760	8.91	13.55
FR000782	6713302	330530	E29/1037	Mica bearing pegmatite outcrop	84	5.22	3.7	0.49	0.04	39.00	116	5.09	42.70
FR000879	6713314	330177	E29/1037	Pegmatite outcrop	81	3.79	18.5	3.52	0.02	55.60	1060	26.80	13.80

SampleID	North	East	Lease_ID	Sample_Description	Li_ppm	Be_ppm	Cs_ppm	K_pct	Mg_pct	Nb_ppm	Rb_ppm	Sn_ppm	Ta_ppm
FR000898	6711250	332474	E29/1037	Pegmatite outcrop	80	2.66	12.1	7.27	0.05	44.80	994	8.47	16.35
FR000895	6710716	332574	E29/1037	Pegmatite outcrop	80	73.60	34.4	3.19	0.01	82.00	1110	6.11	128.00
FR000827	6711908	331972	E29/1037	15m pegmatite outcrop	79	3.83	11.6	4.09	0.03	45.90	734	10.35	11.40
FR000479	6713485	329560	E29/1037	Pegmatite outcrop	78	4.45	16.0	0.90	0.14	50.50	255	7.71	15.25
FR000876	6713652	329685	E29/1037	Pegmatite outcrop	74	4.54	25.5	3.79	0.01	62.90	1525	29.20	32.90
FR000828	6711970	331911	E29/1037	7m wide pegmatite outcrop	73	3.92	3.5	0.88	0.07	34.70	169	8.10	8.95
FR000848	6714568	329909	E29/1037	Pegmatite outcrop	70	3.24	8.0	2.18	0.49	19.70	153	7.62	9.96
FR000850	6714762	330634	E29/1037	Pegmatite outcrop	64	1.52	4.8	1.27	0.10	49.70	263	38.10	8.24
FR000851	6714758	330844	E29/1037	Mica bearing granite outcrop	58	4.74	46.7	5.46	0.02	31.80	1030	11.30	10.75
FR000812	6713488	330295	E29/1037	Pegmatite outcrop	58	2.90	4.9	0.57	0.07	32.90	174	10.15	17.30
FR000829	6712092	331829	E29/1037	Pegmatite outcrop	55	3.30	5.4	2.13	0.04	20.30	362	6.86	5.92
FR000842	6711002	332477	E29/1037	Pegmatite outcrop	54	5.11	10.1	2.42	0.03	58.60	469	4.18	15.45
FR000837	6712610	331331	E29/1037	Mica bearing pegmatite outcrop	54	8.99	6.1	0.72	0.07	68.40	190	8.08	43.00
FR000846	6711251	332359	E29/1037	Pegmatite outcrop	53	6.18	5.3	1.38	0.04	40.30	221	5.51	19.10
FR000769	6713391	329755	E29/1037	Mid-point 100m mica bearing pegmatite outcrop	50	3.68	9.4	2.57	0.06	75.20	740	14.65	18.90
FR000838	6712777	331132	E29/1037	Pegmatite outcrop	49	4.91	8.4	1.34	0.03	89.20	315	10.20	66.20
FR000831	6712322	331760	E29/1037	Mica bearing granite outcrop	48	1.98	6.2	3.01	0.06	20.20	151	1.43	2.47
FR000840	6711977	331975	E29/1037	Pegmatite outcrop	48	2.59	4.6	2.31	0.02	21.20	319	4.67	10.40
FR000836	6712433	331469	E29/1037	Pegmatite outcrop	48	4.97	33.7	4.75	0.04	53.60	1685	18.75	45.20
FR000817	6713722	329615	E29/1037	Mica bearing pegmatite outcrop	44	2.24	5.8	0.99	0.24	33.10	295	13.25	22.80
FR000852	6715212	330313	E29/1037	Mica bearing granite outcrop	43	0.97	1.7	0.56	0.24	41.30	98	16.35	7.29
FR000813	6713577	330347	E29/1037	Pegmatite outcrop	42	2.19	13.5	7.24	0.02	16.70	1085	6.27	5.14
FR000810	6713485	329829	E29/1037	Pegmatite outcrop	42	7.37	20.6	3.32	0.02	56.10	1250	10.10	24.10
FR000822	6712313	331634	E29/1037	Pegmatite outcrop	39	8.70	3.7	0.19	0.03	53.30	27	1.18	25.60
FR000816	6713761	329833	E29/1037	Coarse blocky feldspar from pegmatite	38	2.73	18.2	6.79	0.01	17.45	1750	6.98	5.43
FR000823	6712305	331742	E29/1037	Pegmatite outcrop	37	2.76	7.5	4.03	0.02	76.00	554	4.26	18.95
FR000860	6713746	329580	E29/1037	Pegmatite outcrop	36	2.63	15.0	2.21	0.14	53.60	795	24.50	38.00
FR000780	6713321	329986	E29/1037	Mica bearing pegmatite outcrop	35	9.14	34.3	1.51	0.02	78.20	982	17.45	47.30
FR000896	6710913	332466	E29/1037	Pegmatite outcrop	32	1.72	9.2	6.95	0.01	12.40	1065	2.15	2.78
FR000818	6713604	329679	E29/1037	Pegmatite outcrop	31	4.05	48.1	5.90	0.01	47.10	2690	35.80	29.50
FR000877	6713542	329806	E29/1037	Pegmatite outcrop	30	96.00	24.7	1.14	0.05	91.30	701	11.20	73.00

SampleID	North	East	Lease_ID	Sample_Description	Li_ppm	Be_ppm	Cs_ppm	K_pct	Mg_pct	Nb_ppm	Rb_ppm	Sn_ppm	Ta_ppm
FR000819	6713473	329692	E29/1037	Pegmatite outcrop	30	3.36	15.1	2.15	0.01	78.30	880	18.05	43.00
FR000821	6713239	330366	E29/1037	Pegmatite outcrop	29	2.57	6.9	0.93	0.02	34.40	376	16.85	11.00
FR000855	6715606	330264	E29/1037	Pegmatite outcrop	28	1.64	11.5	6.20	0.01	31.20	584	1.54	4.63
FR000897	6711060	332542	E29/1037	Mica bearing granite outcrop	28	5.54	6.5	1.65	0.03	30.50	318	5.72	7.37
FR000770	6713337	329795	E29/1037	End of 100m mica bearing pegmatite outcrop	28	4.68	28.1	3.67	0.05	39.20	766	4.59	8.82
FR000565	6711548	332224	E29/1037	Pegmatite outcrop	27	3.79	1.9	0.27	0.02	200.00	67	2.77	45.80
FR000839	6712799	331844	E29/1037	Granite outcrop	27	0.83	1.5	0.69	0.15	16.65	45	1.48	1.98
FR000778	6713413	329109	E29/1037	Mica bearing pegmatite small dyke	26	2.59	8.5	1.20	0.14	71.30	545	12.35	39.00
FR000835	6712491	331582	E29/1037	Pegmatite outcrop	25	3.60	10.1	1.60	0.04	34.70	387	17.55	18.75
FR000820	6712941	330403	E29/1037	Pegmatite outcrop	24	3.64	11.4	5.13	0.04	57.20	1205	4.98	11.30
FR000773	6713345	329424	E29/1037	End of 50m, 5m wide mica bearing pegmatite outcrop	24	3.67	23.0	4.11	0.01	62.70	1815	46.50	18.05
FR000772	6713342	329465	E29/1037	5m wide 50m long mica bearing pegmatite outcrop	24	4.38	16.2	2.53	0.02	71.40	1155	47.30	21.10
FR000870	6712837	330324	E29/1037	Pegmatite outcrop	23	4.87	7.7	2.70	0.05	47.40	564	16.35	4.80
FR000483	6712821	330568	E29/1037	Pegmatite from drill spoil 10 To 13m	21	2.74	12.4	2.20	0.20	52.20	528	7.78	18.40
FR000826	6711549	332229	E29/1037	Pegmatite outcrop	21	6.59	4.1	1.18	0.02	117.00	311	4.16	27.20
FR000804	6712960	329976	E29/1037	Qtz vein outcrop	21	2.18	3.3	3.84	0.02	2.27	142	0.44	0.33
FR000864	6712415	330871	E29/1037	Pegmatite outcrop	20	4.14	21.1	3.95	0.03	33.80	984	6.27	5.60
FR000878	6713365	329907	E29/1037	5m pegmatite outcrop	20	9.41	21.1	1.50	0.02	207.00	648	7.38	118.00
FR000567	6711548	332220	E29/1037	Pegmatite outcrop	19	4.34	0.8	0.14	0.02	6.29	23	1.09	1.76
FR000568	6711547	332240	E29/1037	Pegmatite outcrop	19	4.29	33.1	3.44	0.02	55.10	849	1.82	24.50
FR000482	6713238	330365	E29/1037	50m pegmatite on ridge	18	1.54	3.6	0.76	0.01	21.80	249	12.00	5.50
FR000890	6716858	328089	E29/1037	Pegmatite outcrop	17	4.33	6.1	1.74	0.06	27.90	445	14.95	6.49
FR000777	6713246	329402	E29/1037	Mica bearing granite outcrop	17	3.49	7.3	3.17	0.05	22.10	431	5.44	2.14
FR000783	6713254	330541	E29/1037	Massive Qtz vein outcrop	16	0.23	0.4	0.03	0.03	0.62	7	0.26	0.26
FR000868	6712678	330623	E29/1037	Pegmatite outcrop	16	4.24	12.8	4.05	0.02	33.30	1095	6.76	4.52
FR000834	6712430	331653	E29/1037	Pegmatite outcrop	16	2.48	8.0	3.42	0.02	58.00	547	4.73	24.00
FR000885	6716403	330310	E29/1037	Qtz vein outcrop	15	0.07	0.2	0.05	n/a	0.83	9	0.26	0.11
FR000862	6713642	329452	E29/1037	Granite outcrop	15	1.75	0.7	0.62	0.05	2.68	35	3.25	0.28
FR000844	6711196	332490	E29/1037	Pegmatite outcrop	14	4.88	4.6	3.15	0.03	23.40	315	1.50	3.52
FR000800	6712816	330996	E29/1037	Pegmatite outcrop	14	2.40	7.0	1.07	0.01	56.80	352	9.55	67.10
FR000875	6712799	330146	E29/1037	Pegmatite outcrop	14	6.76	6.0	0.74	0.02	41.70	148	3.42	13.65

SampleID	North	East	Lease_ID	Sample_Description	Li_ppm	Be_ppm	Cs_ppm	K_pct	Mg_pct	Nb_ppm	Rb_ppm	Sn_ppm	Ta_ppm
FR000869	6712278	331121	E29/1037	Granite outcrop	13	2.00	6.4	1.36	0.29	2.74	72	0.81	0.26
FR000566	6711550	332216	E29/1037	Qtz vein outcrop	13	0.20	0.1	0.02	0.01	1.95	4	0.11	0.32
				End of 50m mica bearing pegmatite adjacent to granite									
FR000775	6713345	329403	E29/1037	outcrop	12	5.14	11.7	1.87	0.03	76.00	870	22.20	96.20
FR000801	6712793	330801	E29/1037	Pegmatite outcrop	10	2.91	4.8	1.18	0.11	41.90	191	4.33	24.00
FR000798	6716500	327756	E29/1037	Qtz vein outcrop	10	0.12	0.1	0.02	n/a	0.37	1	0.08	0.02
FR000872	6712805	330185	E29/1037	Pegmatite outcrop	9	75.20	41.0	5.58	0.02	46.30	1475	3.33	71.20
FR000799	6712539	330937	E29/1037	Pegmatite outcrop	8	1.96	1.6	0.44	0.02	21.70	113	4.14	4.97
FR000803	6712862	330460	E29/1037	Pegmatite outcrop	8	2.83	26.1	5.89	0.03	34.50	1250	2.48	14.45
FR000779	6713588	329163	E29/1037	Qtz vein outcrop	7	0.19	0.2	0.02	n/a	0.69	7	0.30	0.68
FR000843	6710909	332609	E29/1037	Pegmatite outcrop	7	5.08	11.5	2.34	0.03	31.60	360	2.24	5.03
FR000859	6713736	329589	E29/1037	Qtz vein outcrop	7	1.65	0.4	0.03	0.05	0.86	5	0.33	0.71
FR000888	6716103	328428	E29/1037	Qtz vein outcrop	6	0.02	0.0	n/a	n/a	0.26	1	0.17	0.01
FR000865	6712542	330726	E29/1037	Pegmatite outcrop	6	5.78	9.9	2.36	0.04	55.00	793	8.39	9.14
FR000871	6712813	330306	E29/1037	Qtz vein outcrop	6	1.04	1.4	0.08	0.07	1.99	11	40.70	0.25
FR000767	6713390	329688	E29/1037	Massive white qtz outcrop	5	0.12	0.8	0.06	0.02	1.78	14	0.72	0.65
FR000863	6712072	331212	E29/1037	Qtz Vein outcrop	5	0.35	0.1	0.01	0.02	0.48	2	1.87	0.07
FR000858	6713651	329687	E29/1037	Coarse blocky feldspar from pegmatite	4	1.92	36.4	10.00	n/a	4.34	3030	0.88	3.29
FR000880	6717544	330197	E29/1037	Coarse blocky feldspar from pegmatite	4	0.16	0.1	0.01	n/a	12.05	3	1.58	1.81
FR000887	6715741	328451	E29/1037	Qtz vein outcrop	4	0.04	0.1	0.01	0.01	0.56	2	0.17	0.02
FR000841	6711572	332134	E29/1037	Pegmatite outcrop	3	8.35	3.1	0.83	0.01	94.00	122	1.14	67.50
FR000874	6712803	330147	E29/1037	Coarse blocky feldspar from pegmatite	3	4.83	77.6	5.85	0.01	30.20	1690	0.74	20.80
FR000866	6712576	330741	E29/1037	Pegmatite outcrop	2	4.10	15.9	4.39	0.02	85.10	1295	7.02	33.70
FR000886	6716042	328298	E29/1037	Qtz vein outcrop	2	0.03	0.1	0.01	n/a	0.66	1	0.10	0.04
FR000867	6712575	330741	E29/1037	Coarse blocky feldspar from pegmatite	1	1.90	15.9	8.02	0.01	4.82	1815	0.58	1.99

Appendix 1 – JORC TABLE

Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensuresample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusualcommodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 All rock chip samples were taken during recent mapping campaigns to the Company's Eastern Goldfields projects. A total of 112 samples are being reported in this announcement. Samples were taken by a field geologist of prospective lithologies at tenement: E29/1037. The samples were grab (rock) samples (~1-3kg), believed to be representative of the underlying lithology. The samples were taken from outcropping rocks and from "float" located on the surface (believed to be representative of the underlying lithology). None of these results will be used in a mineral resource estimate. Due to weathering of outcrops in the field, not all minerals were readily. The rock chip samples presented in a highly weathered state and further analyses are required to fully characterise the lithium mineralisation in order to understand the lithium's host mineral/s. Percentages of mineral composition are given in table 4 where available, but visual estimates of lithium bearing minerals are not provided, due to the high degree of weathering of the samples and the subsequent difficulty in identifying and estimating all minerals. The mineral percentages are not considered relevant to the announcement and due to the intense weathering, mineral identification was not always possible. No visual estimates of lithium bearing minerals are provided, as no lithium bearing minerals were observed. Mineral percentages and form (where identifiable) are given in table 4. All mapping/samples were geologically assessed by qualified geologists Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. All sample information, including lithological descriptions and GPS coordinates were recorded during the sample collection and have been recorded in the com

Criteria	JORC Code Explanation	Commentary
Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 analysis) + Au-TL43 (Au by aqua regia extraction with ICP-MS finish) analytical methodology was used by ALS, for multi elements and gold. No FRS drilling results are being reported in this announcement. FRS did not conduct any drilling activities and no drilling results are being reported in this announcement.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	FRS did not conduct any drilling activities and no drilling results are being reported in this announcement.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 FRS did not conduct any drilling activities and no drilling results are being reported in this announcement. The samples being reported in this announcement were geologically interpreted in the field, by an FRS geologist. The rock type was captured in a hand held GPS. This data was later transferred to the Company database. None of the information is this announcement is intended to support a mineral resources estimation.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Rock grab samples were taken during mapping campaigns to the FRS Eastern Goldfields project. The samples were grab samples (~1-3kg), believed to be representative of the underlying lithology. The samples were taken from outcropping rocks, from "float" located on the surface. None of these results will be used in a mineral resource estimate. All sample information, including lithological descriptions and GPS coordinates were recorded during the sample collection. (All coordinates in this announcement are MGA Zone 51 GDA). Individual samples were bagged in calico bags and sent to ALS for analysis, using ME-MS61L + Au-TL43 analytical methods for multi elements and gold.

Criteria	JORC Code Explanation	Commentary				
Quality of assay data and laboratory tests	 Samples were prepared using PUL-23 sample prep technique samples up to 3kg being pulverised to 85% passing 75 micros amples up to 3kg being pulverised to 8kg being pulverised to					
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative Company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Geological interpretation and mapping points reported here have been verified by FRS geologists. Due to the inherent weathering process of outcropping lithologies, mineral identification was not always possible. All data including lithology was recorded on a Garmin GPS in the field, this data has now been transferred to the FRS database. All samples have been subjected to weathering, which meant full mineralogical observations were not feasible and any lithological interpretations have been made by fully qualified geologists. As such, due to the weathered appearance, some lithological interpretations are subjective. Assay results from ALS were reported in elemental form (ppm and also %) and have been converted to relevant oxide concentrations, where applicable, as per industry standards. Conversion factors: 				
		Element Oxide conversion factor Equivalent oxide				
		Lithium (Li) 2.1527 Li ₂ O				
		Caesium (Cs) 1.060 Cs ₂ O				
		Tantalum (Ta) 1.221 Ta_2O_5				
		 Academic papers used for Mg/Li and Nb/Ta ratios are referenced in the reference section. 				

Criteria	JORC Code Explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	A hand-held Garmin GPS was used to confirm the coordinates for all mapping points/sample locations. Sample coordinates were recorded in MGA zone 51.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Rock chip samples were taken from outcrops, float material (thought to be representative of local and underlying lithology). The samples were irregularly spaced and distributed due to the inherently irregular nature of from outcrops and float material. No drilling results are being reported in this announcement.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The location of the mapping points and rock chip sampling is inherently irregular, due to the irregular location of outcropping lithology and float material. The samples are grab samples, believed to be representative of the underlying lithology. No orientation based sampling bias is known to have occurred. No drilling results are being reported in this announcement.
Sample security	The measures taken to ensure sample security.	 All sampling was undertaken by field staff, contracted to FRS as well as a full time FRS employees – all of whom are geologists; the samples were delivered to ALS with no third-party having access to the samples. Each sample was given a unique reference number with the prefix FR.
Audits or reviews	The sampling methods being used are industry standard practice.	 All sampling methodology is industry standard practice and is reviewed by the Company's Exploration Manager No external audits of the data have been carried out.

Section 2 Reporting of Exploration Results (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Mineral tenementand land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or nationalpark and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 E29/1037, E29/1036, are in the name of Outback Minerals Pty Ltd. Forrestania Resources operate the tenements as part of an option agreement between the two parties. All the tenements are in good standing.
Exploration by other parties	Acknowledgment and appraisal of exploration by other parties.	 E29/1036 and E29/1037 (Alexandra Bore/Breakaway Dam): Although now recognised as one complete greenstone belt, the project area was originally mapped as being two separate outcropping greenstone areas, Breakaway Dam and Alexandria Bore, and the historical exploration will be described accordingly. At Breakaway Dam, the first indications of exploration were a number of small pits dug by prospectors, possibly in the late 1960s or early 1970s. Systematic exploration commenced in the 1970s when copper, nickel, lead and zinc exploration was undertaken by Australian Selection Pty Ltd. Their work included geological mapping and surface geochemical sampling, the results of which clearly defined a greenstone belt and copper-zinc anomalism. It was subsequently concluded that the mineralisation was shear zone hosted with limited potential. Between 1997 and 1998, Delta Gold N.L. (Delta) negotiated an option to purchase the project area from prospectors. Delta then completed a shallow auger soil sampling program. Samples were analysed for gold (ppb) and arsenic and copper (ppm). Follow-up by Delta consisted of a further shallow auger soil sampling programme followed by drilling of RAB holes. From May 2003 to May 2004, the exploration area was renamed the Oliver Twist Project and explored by Sunrise Exploration Pty Ltd (Sunrise) on behalf of Pelican Resources Limited and further soil sampling was completed.

Criteria	JORC Code Explanation	Commentary
		 In the zone immediately adjacent to the old prospecting pits a programme easterly inclined shallow RAB holes was completed. In 2007, the outcropping secondary copper mineralisation was sampled by a prospecting group and submitted for limited multielement analyses with the results revealing statistically anomalous levels of gold, lead, tin and tungsten possibly indicative of a significant mineralised sulphide system in the area. Later in 2007, Amex commenced a wide-spaced reconnaissance reverse circulation (RC) drilling programme near Breakaway Dam, focused initially on a number of the old prospecting pits and a shallow geophysical anomaly (MLEM, moving loop ground electromagnetics). A further three RC holes were drilled in mid 2008, testing several additional deeper targets. Another three holes were drilled later in 2009to test other MLEM targets. A number of mineralised sulphide lodes were intersected in each hole, comprising predominantly pyrite, pyrrhotite and minor chalcopyrite, with anomalous copper and silver levels. Down hole geophysical surveying identified eight DHTEM bedrock conductors of interest. The Alexandria Bore greenstone to the south would also have been prospected in the early days, as shown by the presence of old workings. However, the first recorded modern exploration was conducted by Le Nickel (Australia) Exploration Pty Ltd in 1971 who completed mapping and sampling of gossans and rock-chips. No other exploration has been reported over this part of the greenstone belt, and its potential remains largely untested. In 1996, Normandy Exploration carried out gold exploration over the Moriaty shear and granite to the west of Alexandria Bore, and in the following year diamond exploration was carried out over a similar area by Stockdale Prospecting Ltd. These exploration histories are taken from the Aurelia IPO prospectus 2012 (16 March 2012) and WAMEX report A109745. E29/1158): Very little

Criteria	JORC Code Explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 The Alexandra Bore/Breakaway Dam project area (E29/1036 and E29/1037) are located approximately 17km east of Menzies, Coolgardie within the Eastern Goldfields Super Terrane of Western Australia's Yilgarn Craton. The Alexandra Bore greenstone belt, made up of predominantly mafic volcanics, strikes through both of the tenements. This greenstone belt is bounded on either side by Archean granitoids. Greenstone lithologies and pegmatite outcrops have been mapped across both tenements. The Perseverance Fault runs through both tenements, roughly north south, intersecting the greenstone belt in the northern half of E29/1037; whilst an un-named fault strikes roughly north-west/south-east intersecting the Perseverance Fault. A thin slither of the Alexandra Bore greenstone belt continues north through E29/1037 and into the north west corner of E29/1158. The rest of E29/1158 is thought to be made up or granitoids.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole, down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	FRS did not conduct any drilling activities and no drilling results are reported in this announcement.
Data aggregation	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 FRS did not conduct any drilling activities and no new drilling results are reported in this announcement. A cut off of Li2O > 45 ppm is used to indicate an elevated lithium value (from Crustal abundance in granite ("background concentration") of LCT elements (from Breaks et al, 2005, p.4)

Criteria	JORC Code Explanation	Commentary
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	FRS did not conduct any drilling activities and no new drilling results are reported in this announcement. No structural validation has been completed.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate maps with scale are included within the body of the accompanying document.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The accompanying document is considered to represent a balanced report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The results of all pegmatite and granitic samples collected by FRS over the tenement, E29/1037 have been reported in this announcement.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Geochemical assessment and investigative geological mapping of the tenements is on-going. Further field exploration is planned. Further geochemical programmes will also be planned. AC or RC drilling may be considered for geological testing, at a later date.

Table 4: Supplementary rock chip data – this table displays all of the samples seen in figure 2, with mineral observations and percentages. All coordinates are MGA94_51. No visual estimates of lithium bearing minerals are provided in this announcement, as no lithium bearing minerals were observed, due to the highly weathered nature of the samples.

Sample ID	North	East	RL	Tenement	Sample_Description	Muscovite/mica %	Muscovite/mica form
FR000479	6713485	329560	445	E29/1037	Pegmatite outcrop	n/a	n/a
FR000480	6713388	329741	445	E29/1037	20m pegmatite outcrop	n/a	n/a
FR000481	6713551	330271	445	E29/1037	50m Pegmatite on ridge	n/a	n/a
FR000482	6713238	330365	445	E29/1037	50m Pegmatite on ridge	n/a	n/a
FR000483	6712821	330568	445	E29/1037	Pegmatite from drill Spoil 10 To 13m	n/a	n/a
FR000565	6711548	332224	445	E29/1037	Pegmatite outcrop	n/a	n/a
FR000567	6711548	332220	445	E29/1037	Pegmatite outcrop	n/a	n/a
FR000568	6711547	332240	445	E29/1037	Pegmatite outcrop	n/a	n/a
FR000768	6713406	329725	457	E29/1037	100m mica bearing pegmatite on granite contact	<1%	flaky
FR000769	6713391	329755	462	E29/1037	Mid-point 100m mica bearing pegmatite outcrop	<1%	flaky
FR000770	6713337	329795	458	E29/1037	End of 100m mica bearing pegmatite outcrop	<1%	flaky
FR000772	6713342	329465	465	E29/1037	5m wide 50m long mica bearing pegmatite outcrop	<1%	flaky
FR000773	6713345	329424	460	E29/1037	End of 50m, 5m wide mica bearing pegmatite outcrop	<1%	flaky
FR000774	6713323	329443	458	E29/1037	50m mica bearing pegmatite with granite & biotite inclusions	<1%	flaky
FR000775	6713345	329403	461	E29/1037	End of 50m mica bearing pegmatite adjacent to granite outcrop	<1%	flaky
FR000777	6713246	329402	460	E29/1037	Mica bearing granite outcrop	<1%	flaky
FR000778	6713413	329109	474	E29/1037	Mica bearing pegmatite small dyke	<1%	flaky
FR000780	6713321	329986	448	E29/1037	Mica bearing pegmatite outcrop	<1%	flaky

FR000781	6713128	330657	461	E29/1037	Mica bearing pegmatite outcrop	<1%	flaky
FR000782	6713302	330530	459	E29/1037	Mica bearing pegmatite outcrop	<1%	flaky
FR000799	6712539	330937	456	E29/1037	Pegmatite outcrop	n/a	n/a
FR000800	6712816	330996	457	E29/1037	Pegmatite outcrop	n/a	n/a
FR000801	6712793	330801	457	E29/1037	Pegmatite outcrop	n/a	n/a
FR000803	6712862	330460	367	E29/1037	Pegmatite outcrop	n/a	n/a
FR000805	6712966	329957	367	E29/1037	Mica bearing pegmatite outcrop	~2%	flaky
FR000807	6712929	329947	367	E29/1037	Pegmatite outcrop	n/a	n/a
FR000808	6712884	329941	366	E29/1037	Pegmatite outcrop	n/a	n/a
FR000809	6712783	329949	363	E29/1037	Pegmatite outcrop	n/a	n/a
FR000810	6713485	329829	371	E29/1037	Pegmatite outcrop	n/a	n/a
FR000811	6713541	330281	379	E29/1037	Mica bearing pegmatite outcrop	~30%	flaky
FR000812	6713488	330295	377	E29/1037	Pegmatite outcrop	n/a	n/a
FR000813	6713577	330347	381	E29/1037	Pegmatite outcrop	n/a	n/a
FR000814	6713610	330126	379	E29/1037	Pegmatite outcrop	n/a	n/a
FR000815	6713751	329869	380	E29/1037	Pegmatite outcrop	n/a	n/a
FR000817	6713722	329615	383	E29/1037	Mica bearing pegmatite outcrop	~5%	flaky
FR000818	6713604	329679	377	E29/1037	Pegmatite outcrop	n/a	n/a
FR000819	6713473	329692	374	E29/1037	Pegmatite outcrop	n/a	n/a
FR000820	6712941	330403	369	E29/1037	Pegmatite outcrop	n/a	n/a
FR000821	6713239	330366	455	E29/1037	Pegmatite outcrop	n/a	n/a
FR000822	6712313	331634	372	E29/1037	Pegmatite outcrop	n/a	n/a
FR000823	6712305	331742	365	E29/1037	Pegmatite outcrop	n/a	n/a
FR000826	6711549	332229	444	E29/1037	Pegmatite outcrop	n/a	n/a
FR000827	6711908	331972	452	E29/1037	15m pegmatite outcrop	n/a	n/a
FR000828	6711970	331911	456	E29/1037	7m wide pegmatite outcrop	n/a	n/a
FR000829	6712092	331829	457	E29/1037	Pegmatite outcrop	n/a	n/a
FR000831	6712322	331760	456	E29/1037	Mica bearing granite outcrop	~1%	flaky
FR000832	6712329	331704	460	E29/1037	Biotite & mica rich pegmatite	~20%	flaky

FR000833	6712329	331704	460	E29/1037	Mica bearing pegmatite outcrop	~10%	flaky
FR000834	6712430	331653	460	E29/1037	Pegmatite outcrop	n/a	n/a
FR000835	6712491	331582	462	E29/1037	Pegmatite outcrop	n/a	n/a
FR000836	6712433	331469	467	E29/1037	Pegmatite outcrop	n/a	n/a
FR000837	6712610	331331	468	E29/1037	Mica bearing pegmatite outcrop	~2%	flaky
FR000838	6712777	331132	470	E29/1037	Pegmatite outcrop	n/a	n/a
FR000839	6712799	331844	464	E29/1037	Granite outcrop	n/a	n/a
FR000840	6711977	331975	462	E29/1037	Pegmatite outcrop	n/a	n/a
FR000841	6711572	332134	464	E29/1037	Pegmatite outcrop	n/a	n/a
FR000842	6711002	332477	456	E29/1037	Pegmatite outcrop	n/a	n/a
FR000843	6710909	332609	462	E29/1037	Pegmatite outcrop	n/a	n/a
FR000844	6711196	332490	446	E29/1037	Pegmatite outcrop	n/a	n/a
FR000845	6711126	332405	457	E29/1037	Pegmatite outcrop	n/a	n/a
FR000846	6711251	332359	444	E29/1037	Pegmatite outcrop	n/a	n/a
FR000847	6713701	329384	467	E29/1037	Mica bearing granite outcrop	~1%	flaky
FR000848	6714568	329909	462	E29/1037	Pegmatite outcrop	n/a	n/a
FR000849	6714989	330340	463	E29/1037	Mica bearing pegmatite outcrop	~10%	flaky
FR000850	6714762	330634	462	E29/1037	Pegmatite outcrop	n/a	n/a
FR000851	6714758	330844	460	E29/1037	Mica bearing granite outcrop	~1%	flaky
FR000852	6715212	330313	465	E29/1037	Mica bearing granite outcrop	~1%	flaky
FR000853	6715338	330101	472	E29/1037	Mica rich sample from pegmatite outcrop	~95%	flaky
FR000854	6715336	330102	472	E29/1037	Mica bearing pegmatite outcrop	~20%	flaky
FR000855	6715606	330264	477	E29/1037	Pegmatite outcrop	n/a	n/a
FR000856	6713488	329561	492	E29/1037	Drill spoil 5-7m weathered pegmatite	n/a	n/a
FR000860	6713746	329580	498	E29/1037	Pegmatite outcrop	n/a	n/a
FR000862	6713642	329452	468	E29/1037	Granite outcrop	n/a	n/a
FR000864	6712415	330871	453	E29/1037	Pegmatite outcrop	n/a	n/a
FR000865	6712542	330726	454	E29/1037	Pegmatite outcrop	n/a	n/a
FR000866	6712576	330741	455	E29/1037	Pegmatite outcrop	n/a	n/a

FR000868	6712678	330623	458	E29/1037	Pegmatite outcrop	n/a	n/a
FR000869	6712278	331121	461	E29/1037	Granite outcrop	n/a	n/a
FR000870	6712837	330324	469	E29/1037	Pegmatite outcrop	n/a	n/a
FR000872	6712805	330185	468	E29/1037	Pegmatite outcrop	n/a	n/a
FR000875	6712799	330146	467	E29/1037	Pegmatite outcrop	n/a	n/a
FR000876	6713652	329685	479	E29/1037	Pegmatite outcrop	n/a	n/a
FR000877	6713542	329806	476	E29/1037	Pegmatite outcrop	n/a	n/a
FR000878	6713365	329907	473	E29/1037	5m pegmatite outcrop	n/a	n/a
FR000879	6713314	330177	473	E29/1037	Pegmatite outcrop	n/a	n/a
FR000889	6716115	328420	494	E29/1037	Pegmatite outcrop	n/a	n/a
FR000890	6716858	328089	475	E29/1037	Pegmatite outcrop	n/a	n/a
FR000894	6710036	332764	437	E29/1037	Pegmatite outcrop	n/a	n/a
FR000895	6710716	332574	455	E29/1037	Pegmatite outcrop	n/a	n/a
FR000896	6710913	332466	456	E29/1037	Pegmatite outcrop	n/a	n/a
FR000897	6711060	332542	455	E29/1037	Mica bearing granite outcrop	~1%	flaky
FR000898	6711250	332474	452	E29/1037	Pegmatite outcrop	n/a	n/a
Sample ID	North	East	RL	Tenement	Sample_Description	Qtz %	Qtz form
FR000566	6711550	332216	445	E29/1037	Qtz vein outcrop	~99%	Vein
FR000767	6713390	329688	455	E29/1037	Massive white qtz outcrop	~99%	Vein
FR000779	6713588	329163	472	E29/1037	Qtz vein outcrop	~99%	Vein
FR000783	6713254	330541	458	E29/1037	Massive qtz vein outcrop	~99%	Vein
FR000798	6716500	327756	459	E29/1037	Qtz vein outcrop	~99%	Vein
FR000804	6712960	329976	364	E29/1037	Qtz vein outcrop	~99%	Vein
FR000859	6713736	329589	497	E29/1037	Qtz vein outcrop	~99%	Vein
FR000863	6712072	331212	445	E29/1037	Qtz vein outcrop	~99%	Vein
FR000871	6712813	330306	469	E29/1037	Qtz vein outcrop	~99%	Vein
FR000885	6716403	330310	473	E29/1037	Qtz vein outcrop	~99%	Vein
FR000886	6716042	328298	486	E29/1037	Qtz vein outcrop	~99%	Vein

FR000887	6715741	328451	489	E29/1037	Qtz vein outcrop	~99%	Vein
FR000888	6716103	328428	494	E29/1037	Qtz vein outcrop	~99%	Vein
Sample ID	North	East	RL	Tenement	Sample_Description	Feldspar %	Feldspar form
FR000816	6713761	329833	380	E29/1037	Coarse blocky feldspar from pegmatite	~70%	blocky
FR000858	6713651	329687	493	E29/1037	Coarse blocky feldspar from pegmatite	~90%	blocky
FR000867	6712575	330741	454	E29/1037	Coarse blocky feldspar from pegmatite	~90%	blocky
FR000874	6712803	330147	467	E29/1037	Coarse blocky feldspar from pegmatite	~50%	blocky
FR000880	6717544	330197	459	E29/1037	Coarse blocky feldspar from pegmatite	~80%	blocky
SampleID	North	East	RL	Tenement	Sample_Description	Biotite %	Biotite form
FR000806	6712965	329959	367	E29/1037	Biotite rich pegmatite	~40%	flaky
FR000832	6712329	331704	460	E29/1037	Biotite & mica rich pegmatite	~75%	flaky
FR000873	6712802	330184	468	E29/1037	Biotite rich pegmatite	~30%	flaky
FR000774	6713323	329443	458	E29/1037	50m mica bearing pegmatite with granite & biotite inclusions	~10%	flaky